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Abstract. Ln this paper we discuss new applicalions of the non-classical method of symmetry 
reduction. The equations treated x e  well known in mathemtical physics and are used to describe 
multisoliton solutions of the Burger equation. They are also useful in rhe study of Kw-Moody 
aigebns, ond in the examination of nonlinear wavcs in the theory of elasticity. With the help 
of the non-classical symmetry method the parlid differential equations me reduced to ordinary 
differentid equations which are solvable explicitly. 

1. Introduction 

At the end of the last century Sophus Lie developed a method for reducing the order 
of ordinary differential equations (ODES) and for finding new solutions for ordinary and 
partial differential equations (PDEs) [ 1,2]. This method determines the transformation under 
which a differential equation is invariant. Since the calculations are very complicated and 
extensive, the use of this method was ignored for a long time. 

In 1969 Bluman and Cole [I81 proposed an extension of Lie’s method for symmetry 
reduction which has since been called the ‘non-classical method’ for symmetry reduction, 
or in short ‘the non-classical method’. With this method Bluman and Cole found new 
solutions of the heat equation which are not derivable by Lie’s ‘classical method‘. Olver 
and Rosenau extended the non-classical method to ‘weak symmetries’ [19]. Levi and 
Winternitz I201 presented an explicit algorithm to calculate the determining equations of 
the non-classical method and found classes of solutions for the Boussinesq equation not 
derivable with Lie’s symmetry reduction. Quite recently Clarkson and Mansfield [21, 221 
proposed another algorithm for the non-classical method that can be applied even to a 
wider class of PDES. The main difference between the Levi-Winternitz algorithm and 
the Clarkson-Mansfield algorithm is in the use of the differential consequences resulting 
from the conditional equation and their substitution into prolonged equations. While these 
consequences are substituted by Levi and Winternitz in the prolonged expressiob of the 
original PDE, Clarkson and Mansfield use them to substitute the original PDE. 

In this paper we show, using three examples which are well known and have been 
extensively studied in various fields of physics, that the non-classical method is an excellent 
tool for finding new classes of solutions. The desired solutions of the PDES cannot be 
found by applying local symmetry methods. The reduction of the PDE to an ordinary 
differential equation is demonstrated, and can be solved analytically by well known methods 
or numerically for specific initial values. 

In section 2 we summarize the essentials of Lie’s symmetry reduction. Section 3 contains 
the main ingredients of the non-classical method. Sections 46 are devoted to discussing the 
applications of the non-classical method. In section 4, we consider an evolution equation 

0305-4470/94/196479tlS$l9SO @ 1994 IOP Publishing Ltd 6479 



6480 G Baumann et a1 

for solitons describing a single soliton for an N-soliton solution of the Burger equation. 
Section 5 contains results for a coupled system of KdV equations used in the study of 
Kac-Moody algebras. In section 6, the case of the nonlinear wave equation for a moving 
threadline is treated. The last section discusses our results and gives a summary of the 
method. 

2. The classical method of Lie symmetry reduction 

A common way of finding particular solutions for a system of nonlinear PDEs is the symmetry 
reduction by Sophus Lie [1,2]. This method is entirely algorithmic and allows one to 
calculate the symmetry group represented by infinitesimal transformations under which 
solutions of the system are invariant. This method has been applied to hundreds of PDES 
and systems of PDES in order to obtain exact similarity solutions [5-71. An extensive number 
of other equations treated by the same method are compiled in the books of Roger and Ames 
191 as well as in Ibragimov’s survey [8]. 

The Lie method is also a useful tool for finding exact solutions, constructing new 
solutions from old ones and characterizing the symmetry properties of PDEs. In particular, 
we are interested in discovering solutions for well known systems of PDES. 

Everyone who has used Lie’s method when studying solutions of PDES knows that this 
procedure is very time consuming and tedious. Especially, the large number of determining 
equations resulting from this procedure is hard to handle by a pencil calculation. This was 
one of the reasons for developing computer-based methods to do the calculations. Various 
symbolic manipulating programs have been developed in recent years. Today there exists 
a program in nearly every algebraic language such as MATHEMATICA [12], REDUCE [15], 
MAPLE [16], MACSYMA [I31 and AXIOM [15]. A more recent summary of these programs 
and their functionality is given in 1141. Some of these programs [12,15,17] are now capable 
of deriving completely automatically the symmetries and their algebraic properties of a great 
number of equations. With our program in MATHEMATI~A we solved nearly 300 equations 
found in the literature. Parts of the results obtained are listed in [8,9] which we used to 
check our program. 

To understand how Lie’s method works and what information we can gain from it, let 
us discuss its general procedure. We consider the general case of a nonlinear system of 
PDES which we describe by 

A , ( x , u ( ~ ) ) = o  v = l ,  ..., m (1) 

where A” represents one of the m coupled equations in n independent variables x = 
( x ’ ,  . . . , x ” )  and m dependent variables U = ( U ’ ,  . . . , U’”). dk) denotes all derivatives of 
the dependent variables U with respect to the independent variables x up to order k. We 
assume that the A V  are smooth functions in their arguments. The central question of a 
symmetry analysis of (1) is under which transformation such a system is invariant. The 
invariance can be considered following Lie by applying the one-parameter Lie group of 
point-transformations to (1): 

(xi)” = x‘ + & ( x ,  U )  + O(2) 
(U”)’ = un + € q Y ( X ,  U) + O ( 2 )  

This means Lie’s method requires the invariance of (1) under the transformation (Z), (3). 
Claiming the invariance of (1) yields an overdetermined Linear system of PDES for the 



Applications of non-classical symmetries 6481 

The transformations of the independent and dependent variables infinitesimals ti and 
are characterized by vector fields or infinitesimal generators given by 

The mathematical formulation of the invariance criterion for ( I )  is 
X(k) AV@, ~ " ' ) l ~ = ~  = 0 (5) 

where X") denotes the kth prolongation of the infinitesimal generator X, 

with the multi-indices J = ( j l ,  . . . , j,,) and 
a w  

- axil . . . axjp ' 
uu - 

The second summation is extended over all derivatives of un up to order k. The higher 
prolongation elements are determined by the infinitesimals 6' and qY through 

D i F ( x ,  U )  is the ith total derivative of a function F ( x ,  u )  which is defined by 
... 

D ( F ( X ,  U) = a X j F ( x , U )  +Cuqa,..F(x, U). 
ol=l 

The @I can be calculated recursively by a formula known from [3.4] 

Once we know the infinitesimals I' and $P we also know the infinitesimal generator 
X.  With the infinitesimal generator at hand the explicit transformation acting on the space 
of independent and dependent variables can be calculated by the so-called Lie series 

(9) 
Knowing the explicit transformations in (9), new solutions can be obtained from old ones. 
This behaviour was already known by Lie in the study of the diffusion equation. 

Another method to discover new solutions of (1) is to construct a class of functions 
which solve (1) and are invariant under a subgroup of the full symmetry group of (1). The 
group invariants can be calculated by solving the characteristic equations 

(x * ,  U ' )  = e x p [ ~ X ]  ( x ,  U). 

or the invariant surface condition 

Then the original system (1) can be rewritten in terms of group invariants and thus the 
number of independent variables is reduced. 

Based on the invariant surface condition ( I I ) ,  in 1969 Bluman and Cole developed an 
extension of Lie's procedure which is today known as the non-classical method of symmetry 
reduction. 
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3. Non-classical method of symmetry reduction 

The 'non-classical method' was introduced by Bluman and Cole [I81 during the study of 
the diffusion equation. A group-theoretical explanation of this method is given in [19,20]. 
The procedure was extended in [I91 to 'weak symmetries' and 'side conditions'. The vector 
fields of the non-classical method do not need to form a Lie algebra. Hence there can be a 
wider class of similarity solutions than in the classical case. However, it occurs many times 
that the results of both the classical and non-classical methods are equivalent. In such a 
case the non-classical method fails to produce new solutions. 

An essential observation by Bluman and Cole was that an invariant solution u ( x )  of (1) 
does not only solve the original system but also the surface condition 

X ( u )  = 0. 

The non-classical method applies the classical Lie method of symmetry reduction to the 
extended system 

Av(x, U )  = 0 (12) 
X ( u " )  = 0 (13) 

where v = I , ,  . . , m, LY = I , .  . . , m. 
The invariance criterion reads in the original form as 

X") A(x, u)l~=o.x~.)=o = 0 ( 14) 
x(') x(u)lA=o,x~.)=o = 0 (15) 

Equation (15) imposes no additional conditions because (15) is satisfied identically. 
The added surface condition can be interpreted as a side condition or as a conditional 

equation that introduces new dependencies on the derivatives of U .  These relations have to be 
taken into consideration during further calculations. In the algorithm of Levi-Winternitz the 
differential consequences of (13) are substituted in (14) to eliminate the additional relation 
among the derivatives of U .  On the other hand, in the algorithm proposed by Clarkson 
and Mansfield the substitutions from the added surface condition (13) are replaced in the 
original system (12). Then the classical symmetry reduction by Lie is calculated for the 
altered system of PDES. 

Common to both algorithms is that the resulting determining equations for the 
infinitesimals ti and are an overdetermined nonlinear system of P D D .  Because of 
the additional relations among the derivatives the set of solutions may, but need not be, 
larger than the one obtained by the classical method. These solutions yield neither a vector 
space nor a Lie algebra. With the non-classical method, the old solutions of (1) cannot be 
transformed to new ones, but similarity solutions can be obtained. 

The non-classical method has been applied to various PDEs. New classes of solutions 
which cannot be obtained by the classical method have been found for the heat equation 
[IS], the Boussinesq equation [20]. the Burger equation 1291 and the Fizhugh-Nagumo 
equation [28]. 

Since the calculation is very time-consuming, we have developed a MATHEMATICA 
program which allows the derivation of the nonlineur determining equations for non-classical 
symmetries. This alteration of Lie's method is incorporated in the Lie package [12], which 
also allows the solution of the nonlinear determining equations for some simple cases. 

To demonstrate how we can find unknown solutions of well h o w p  equations we will 
apply the classical and non-classical procedure to some examples. 
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4. Evolution equation of solitons 

The first example we will consider is an equation presented by Fuchssteiner [23] 

SS, - SS,, + 2s: - Z ~ S S ,  = 0. 

U, = ux* + 2uu, 

(16) 
This equation arises in the study of multi-soliton solutions of the Burger equation 

Equation (16) describes the evolution of a single soliton interacting with other solitons of 
the multi-soliton solution. An N-soliton solution of the Burger equation is composed as a 
superposition of N solutions of equation (16) with different ‘masses’ m i .  The masses mi 
are related in the corresponding N-soliton solution to the asymptotic speed of the emerging 
solitons. For a detailed discussion of that equation and the link to similar equations refer 
to [23]. 

If we apply the classical method of Lie described in section 2 ,  we can find the 
infinitesimals which represent the point symmetries of (16). The infinitesimals contain, 
besides the equation parameter m ,  six arbitrary constants and one free function: 

The free function f ( x ,  t )  has to solve the linearized form of the original equation (16) 

- f i + 2 m f x + f r x = 0 .  (20)  
C1 is related to the x and f 2  to the t coordinates while q4l is the infinitesimal for the 
dependent variable S ( x ,  I ) .  

The symmetry analysis by Lie yields a discrete six-dimensional symmetry group for (16). 
The transformations characterized by the infinitesimals corresponding to the group constants 
c I 1  c2 and c4 reflect the invariance of (16), under space and time translations, respectively, 
the homogeneity of the original equation. Additionally there exist two different kinds of 
scaling invariant solutions which can be obtained by setting cg = 1, respectively C6 = 1, 
and the rest of the group constants ci to zero. The invariant solution comesponding to cj is 

S ( X ,  t )  = w(z)exp[mx + m 2 t ]  

with the scaling invariant similarity variable 
X z = -  
Ji’ 

The ansatz connected with C6 has a similar form, but with additional terms 
X 

with L = - 
t 

Finally, there is another type of invariant solution which is derived by setting c3 = 1 and 
the rest to 0. This solution is not scaling invariant and has a rather simple form 

X 
S ( x ,  t) = w(z)  with z = - + 2 m J .  Ji 

The intention here is to demonstrate that the application of the non-classical method 
will give us new solutions not obtainable with the classical method. We show that the 
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solutions of the non-classical method contain a wider class of functions than the classical 
method, and that the results of the classical method are included in the non-classical one. 
To demonstrate how we can apply the non-classical method to (16) let us first consider the 
standard case with e* = 1, usually discussed in the literature [20-22]. 

Case I: I' = 1. 
that the infinitesimals have the general form 

If we apply the theory given in section 3 with cz = I to (16) we find 

e' =a(x . t )  (21) 
p =  1 (22) 
@I = b(x ,  t ) S  + C ( X .  1)s'. (23) 

Inserting this ansatz into the determining equations we obtain a nonlinear coupled system 
of PDES for the unknown functions a ,  b and c depending only on x and I :  

- a, - Zma, - 2aa, + 26, + a,, = 0 
b, + Zba, - 2mb, - 4, = 0 
cl -t 2ca, - Zmc, - cxr = 0.  (26) 

If we set a, = 0 or either a, = constant in (24)-(26) we get results equivalent to those 
found by the classical method. Since system ( 2 4 x 2 6 )  is a nonlinear system of PDEs, it 
is hard to find a complete and general solution, However, a particular solution which is 
different from the solutions obtainable from the classical infinitesimals follows by setting 
b(x ,  I )  = c(x.  t) = 0 and a(x. t )  = f ( x ) :  

41 = f ( x )  p =  I 6' = o  
Now integrating (24) gives an ODE of first order for f ( x )  

f ' ( x )  - 2mf (x )  - f 2 ( x )  = kl . 
Via this equation f ( x )  can be found explicitly by 

f ( x )  = -m+ J k , - ; ; E ; ; t a n ( m ( x  + k 2 ) )  

The surface condition following from (11) gives us 
f ( X ) S ,  + Sl = 0 

Consequently, S(x ,  I) has the form 

with 
m 1  [ ki ki 

z = k exp --I - --x + - log I-m cos m ( x  + k2) 

+ G s i n w ( x + k 2 ) 1 ] .  

The original equation (16) is reduced by this 'ansatz' to an ODE 

-ZWW" + (kr - 1)wW'f  ~ZW' = 0 

which solution reads 
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The integration constant k of z can be replaced by k3. This type of solution containing a 
new kind of similarity variable, where transcendental functions appear instead of powers in 
x and t ,  is completely different from solutions obtainable from the classical method. For 
another case let us now consider that c2 = 0. 

Case 2: g2 = 0. For this case, we use an ansatz for the infinitesimals of 

gz = 0 61 = r$(x, t ,  S) . 
With this ansatz, we obtain the determining equation for @I, 

- z ( @ ) ~  + 2 ~ ( @  ) @s - s*(@ ) @ss + s'@,! - 2m~'@;  + 4 ~ 6 ' 6 :  

The use of a polynomial ansatz in S for $' delivers a solution quadratic in S 

I 2  I 1 2  I 

(32) 

(33) 
The free functions f ( x .  t )  and g ( x ,  t )  again have to solve a coupled nonlinear system of 
differential equations 

(34) 
(35) 

As a limiting case, we get the classical result with CI = . . . = c )  = 0 ,  cd = 1, c5 = cs = 0 
from the non-classical one by setting g ( x ,  t )  = 1 because (34) reduces to (7.0). 

It is easy to recognize two solutions of the system (34H3.5) which are not equivalent 
to classical results. To see how this is possible let us consider two cases for the choice of 

2 1 1  2 1 - 0  -2s c csx - s GXX - 

cl = g ( x .  t ) S ( x ,  t )  + f ( x ,  t ) S 2 ( x ,  0 ,  

. 

fl - h f x  + 2 f g x  - f x x  = 0 
gt - 2mgx + 2ggr - gx, = 0 .  

f and g. 

( i )  f ( x ,  t )  = g ( x ,  t )  = j i ( x ) .  The substitution of the ansatz into (34) and (35) reduces 
them to a single second-order ODE for f l  which can be integrated at once: 

(36) - j; - 2mfl + jf = kl . 
This equation can be solved in terms of tanh 

fI(x) = m - G t a n h  [ m ( x  + kz)] . (37) 
The surface condition yields for S ( x ,  I) 

with 

sfi ( x )  dx = mx - log I cosh m ( x  + k2) I . 
Re-substituting (38) into the original equation (16) determines F ( t )  to be 

F ( t )  = kse"' . 
A graphical representation of S ( x .  t )  for a specific choice of the parameters is plotted in 
figure 1. 

The ansatz (38) is a special kind of separation in x and t .  In turn, a non-classical 
method can indicate whether a kind of separation is possible and determines the structure of 
the ansatz. In this case there is no similarity variable at all, and consequently this solution 
cannot be derived by the classical method. 
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Figure 1. Solution of equation (16) for the ease 2 (i). The choice of the parameters to plat the 
function is k2 = 0. k l  = k l  = m = I .  

Figure 2. Solution of (16) for the case 2 (ii). The parameters are set to k2 = 0. k l  = ks = m = I ,  

(ii) f ( x ,  t )  = 0, &, t )  = f i ( x ) .  According to (34) and (35) fi has to solve the same 
ODE as f l  , so we can set fi = f l  . The solution S ( x ,  r) is almost the same as given in (38) 
except the ‘1’ in the denominator. The integrated form is represented in 

S(x,r)=k,exp -kit+ f l ( x )  . (39) [ 1 1  
For certain parameters a three-dimensional plot of S ( x .  t )  is given in figure 2. 

original method. 
Here we have found a different separation ansatz which cannot be obtained by Lie’s 
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5. Coupled KdV-type equations 

The system of coupled KdV-type equations is another example to demonstrate the application 
of the non-classical method: 

ut + 3uv, = 0 
ut + 2ux,, + 2UUX + U,U = 0 .  

(40) 
(41) 

Equations (40) and (41) can be found in the study of Kac-Moody algebras and in soliton 
theory [24, 251. They give general properties for this type of equation in a KdV hierarchy, 
e.g. all conserved quantities can be written as differential polynomials in U and U. 

Up to now the non-classical method has only been applied to single PDES [18, 20,28,29]. 
All examples discussed in the literature are restricted to the case with one dependent variable. 
With our example, we will demonstrate that the non-classical method is also useful in the 
discussion of systems of PDEs. 

If we use the classical symmetry reduction to examine the system of equations (40) and 
(41), we find a three-dimensional symmetry group represented by the infinitesimals 

(42) p = CI - --x 

(43) =cz  - I Q t  

41 = c3u (44) 
(45) 

Again 5 )  and E 2  are the infinitesimals for the independent variables x and t .  6' and $z are 
the infinitesimals related to U and U. respectively. The constants C I ,  cz, and cg are group 
constants characterizing the point symmetry of (40) and (41). From the infinitesimals it is 
obvious that (40) and (41) are invariant under space and time translations and possess a 
scaling invariance in the dependent and independent variables with the similarity variable 
z = xt-113, 

Similar to the equation discussed in section 4, we find that the symmetries of the non- 
classical method contains the symmetries of the classical method in some limiting cases. 
The application of the non-classical theory gives us an ansatz for the infinitesimals by 

c3 
2 

2 3 

2 c$ =c3v .  

e' = a( t )  +xb( t )  

4' = c( t )  + xd(t)  - 2a(t)u 
5 2 = 1  

4 2  = &)U . 
The functions a @ ) ,  b( t ) ,  . . . , g(r) solve an overdeterminednonlinear system O f  ODES which 
can be solved by integration: 

a b f 2 a g  -aa' = 0 (46) 
2c - 3ab -a' = 0 (47) 
bZ +2bg - b' = 0 (48) 
-2d + 36' + b' = 0 (49) 
-cb - 2cg + e' = 0 (50) 
- d b - 2 d g + d 1 = 0  (51) 

2ad + 2bc - 6ab2 - ba' -abr = 0 (53) 

d + 3bg + g' = 0 (52) 
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-4cd + 3abd + 3cb' + da' + cb' = 0. (54) 
The link between the classical and non-classical symmetries is made if we set c(t) = d( t )  = 
0 in (46)-(54) which leads to the classical result. Besides the classical limil, there are two 
different cases which we will take into consideration. First let us assume b(t) = 0. 

Case I :  b( t )  = 0. By this assumption the infinitesimals reduce to 

p =  1 
6' = kze 2, I 

@ ' = k l .  

Solving (11) delivers the ansatz for u ( x ,  t )  and u ( x ,  t )  

u ( x ,  t) = w ( z )  + klx u ( x ,  t) = ek"f(z) 

Equations (40) and (41) reduce to a system of ODES 

(59) 

Zklzf '(z) +kl f ( z )  + f ( r ) ( w ' ( z ) ;  +kl)  +Zi;;w(z)f'(z) ki + 2  f"'(z) = 0 (60) 

which can be decoupled by integrating (59): 

ki 
kz 

-U'(Z) f 3-- f ( z ) f ' (Z)  = 0 

(61) 3ki 
2k2 
-(f(z))2 + a  = w(z)  

Equation (62) can be solved in terms of the second Painlev6 transcendent 1261 by the 
transformation 

Thus the solutions of b(t)  = 0 correspond to second Painlev6 transcendents. This is a 
completely new and different solution for u(x, f) and u ( x ,  t )  which is not scale invariant as 
is the solution obtainable with the classical method. 

In OUT second case, we generalize the first one by assuming b(t)  # 0. 

Case 2: b(t) # 0. 
condition cannot be solved for the complete solution 

We take a particular solution for the infinitesimals as the surface 

.$I = X (  - $kl tanh(-kIt) + i k l )  (64) 
p = 1  (65) 
6' = x (  - ik;  tanh(-klt) + hky) - 2( - i k l  tanh(-klt) + 4k1)u (66) 
q5' =.($kl tanh(-klt) + fk l )u .  (67) 



Applications of non-classical symmetries 

I 

6489 

Figwe 3. Numerical solution w ( i )  
of (71) and (72). The choice of the 
p m e l e r  is kl = 1 and lhe initial 
values are a t  to f f l )  = 1 , f y I )  = 
I ,  f " ( l ) = O , w ( l ) = I .  

Figure 4. Numerical solution f ( z )  
of (71) and (72). The choice of the 
parameter is kl = I and the initial 
values are set to f (1) = I ,  f'(1) = 
I ,  f"(l) = 0. w ( l )  = I .  

So u(x, t )  and u(x, f) can be expressed in terms of the invariants w ,  f and z by 

e-Zklf/3 kt 

[~osh ( -k , t ) ]~ /~  3 u(x, L) = w(z)  + -X 

Inserting these expressions into (40) and (41), we obtain a coupled system of ODES in w(z )  
and f (2) 

- fk iZW'(Z)  - $ k i W ( Z )  4- 3f(Z)f '(Z) = 0 (71) 
2 ?kif(z) + ikizf'(z) + 2f"'(z) - Zf'(Z)W'(Z) + 9kif(z)(f ' (z)) '  + ~ ' ( z )  f (2) = 0. (72) 

This ansatz for u ( x ,  t) and u(x, t )  can neither be compared with case 1 nor with the results 
which can be derived by Lie's method of symmetry reduction. We get a completely new 
class of solutions. 

This system is coupled in a non-trivial way and can only be solved numerically. A 
numerical solution obtained by MATHEMATICA is plotted for k l  = 1 in figures 3 and 4. 
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6. Nonlinear wave equation 

Finally we apply the non-classical method to a type of nonlinear wave equations uII = 
( f ( u ) u x ) , .  The group properties and the associated Lie algebra of this equation are 
developed in [ I l l ,  also including physical examples which can be described by types 
of nonlinear wave equations. As an explicit example we consider the longitudinal wave 
propagation on a moving threadline. ?he governing equations of this model are 

1 
pa 

v, + VV, = -us (73) 
. .  

Ar + Vh,  -AV, = 0 
U = U().) = Eor(A) 

(74) 
(75) 

where V ,  ,I7 U and po denote longitudinal velocity, stretch, stress and constant density, 
respectively. The system of equations (73) and (74) can be transformed to the equation we 
want to examine if we set 

Then h has to satisfy a PDE in the independent variables t and + 

If we assume for the stretch-stress relation Hooke's law 

U =E$.  

we get an equation representing the case with f ( U )  = U 

(77) 

= c ]  +czx (78) 
(79) 

= 2(cz - c4)u. (80) 

2 ut, - ( U x )  - U U I I  = 0. 
This equation has got a four-dimensional point symmetry group with the infinitesimals 

p = C )  + c4t 

As in the previous examples c ' ,  f 2  and 4' are related to x ,  f and U .  The infinitesimals 
generate solutions which are invariant under space and time translations. Additionally, 
scaling invariant similarity solutions exist. 

The non-classical method yields another different solution: 

5 '  = k l t  = 1 #' = 2k:t 

For simplicity we set k l  = 1 and obtain 

u=w(z)+r2 with z = x - i t z .  (81) 
Equation (77) reduces by using (81) to an ODE which can be easily integrated: 

-ww' - w -t 22 + a = 0 (82) 
where a is a constant of integration. The solution of (82) can be obtained after extensive 
analytical calculations by 
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Figure 5. Solution w ( z )  of the reduced nonlinear wave equation (82). The specific choice of 
the integration constants is CI = O,a = -1.0. I .  From lefi to right the CUP- correspond to 
n = -I, a = 0. a = I. 

with 
3 f (z )  = 54(a - 22)’ - 108(a3 - e3‘l - 6aZz + 12az2 - Sz ) 

being a polynomial in z of order 3 and 

g(z) = J-2916(a - 2 ~ ) ~  + f 2 ( z )  

being the square root of an extended polynomial o f f .  A graphical representation of w(z)  
is plotted for c] = 0, a = -1, a = 0,  a = 1 in figure 5. 

In this section we have found a new solution of the nonlinear wave equation (77) for 
a generalized ‘travelling wave’ variable which is essentially different from the solutions 
calculated in [ 1 I ]  which can be obtained by the infinitesimals given in (78)<80). In the 
article by Ames and Lohner [ l l ]  solutions with scaling variables are derived from (77) in 
the form 

x + k 3  

( t  + kdkS 
u(x, t )  = ( t  + k , ) ” g ( z )  with z = 

where g(z) has to satisfy a nonlinear ODE of second order in z 

The constants a,  b, c and d depend on the former constants ki. Ames and Lohner 
demonstrated in [ I l l  that singularities for a certain choice of parameters can occur for 
u ( x ,  t ) .  In contrast to this behaviour, our solution w ( z )  is defined for all real-valued z and 
is linea in z with fixed slope 1 in the asymptotic case Iz/ >> 1 independent of any group 
parameters. 

7. Conclusions 

We have demonstrated that the non-classical method is a useful and effective tool to discover 
new solutions of PDBs. These solutions are different from those which can be obtained by 
Lie’s method of symmetry reduction. The results derived by both methods are summarized 
in table 1. A disadvantage of both the non-classical method and the classical method of Lie 
is the absence of special initial and boundary values. In the case of the classical method, 
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Table 1. Comparison between the classical and the non-classid method. For the non-classical 
method sevenl different solutions of the infinitesimals IUK listed. The function f ( x .  I )  has to 
satisfy equation (20) and the functions fO;) and fi(x) are given in (28) and (37). respectively. 

PDE Classid method Non-classid method 

boundary value problems are taken into consideration in [4,10]. However, for nonlinear 
PDEs too many restrictions are involved. 

With our calculations we have demonstrated that the non-classical method can deliver 
an ansatz to separate independent variables. This method is very useful if we remember 
that there is more than one possibility for a separation. Another useful property of the 
non-classical method of symmetry reduction is its applicability to system of PDEs. Up to 
now the procedure of the non-classid method of symmetry reduction has been applied 
to scalar PDES, i.e. to cases with one dependent variable. With our calculations using 
the non-classical method for a system of D E S  we have derived new classes of solutions. 
The resulting equations cannot be decoupled in their most general cases. We note that the 
reduction of the equations is possible with the non-classical method. One of these reductions 
results in the second Painlev6 transcendent, which is known to be solvable. 

Another way of finding new classes of solutions for PDES is the 'direct method' 
introduced by Clarkson and KrusM 1271. It has been shown that the non-classical method 
is more general than the direct method [28,29]. The reductions in part of the examples 
treated in this paper, i.e. whenever a similarity variable occurs, should be obtainable with 
the direct method as well [29]. 
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